ON THE SOLUTION OF NONSTATIONARY HEAT-CONDUCTION
PROBLEMS WITH VARIABLE HEAT-TRANSFER COEFFICIENT
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The article describes an exact method for calculating the temperature field in solids when
they are heated in a medium with a variable heat-transfer coefficient and a nonuniform
initial temperature distribution,

In {i] a method for the exact calculation of the temperature field of a solid object undergoing heat ex-
change in a medium with a variable temperature and a variable heat-transfer coefficient was discussed for
a large number of Bi(Fo) functions of practical interest, as applied to an infinite plate, For 8(1, Fo), the
temperature of the heated surface, we found in [1] an ordinary differential equation with variable coefficients
which is solvable by operational methods [2]. The initial temperature distribution was assumed to be zero,
We shall now show, using the example of a plate, how to deal with a nonuniform initial distribution, We shall
assume that the temperature of the medium is zero, Heat transfer takes place at the plate surface X =1,
while the surface X = 0 is thermally insulated,

To solve the problem, we must establish how 80 (1, Fo)/8X varies with @(1, Fo).
It was shown in [3] that if Fo > 0, the function 8@ (1, Fo)/8X can be represented as a convergent series
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in which Z;(Fo),i =1, 2, ..., are determined from the solution of the ordinary differential equations
T,Z; (Fo) + Z, (Fo) = 2T;®(1, Fo), i=1, 2, .., (2)

with initial conditions Z;(0) = Z{', uniquely determined by the initial temperature distribution function, For
the equations in (2) we have
4
(2i — 1)*n2

i

The solutions Zi(Fo) of these equations with initial conditions Z{’ which are nonzero at time Fo = 0—0
(before the start of the perturbation)will be identical for Fo > 0 + 0 (after the start of the perturbation) with
the solutions y; (Fo) of the equations

T:9: (Fo) + y; (Fo) = 27,8 (1, Fo) +- T:Z;8(Fo), i=1, 2, .., (3)
with initial conditions which are zero at time Fo = 0—0 [4]. Here 6(Fo) is the Dirac é~function,

Summation of the left and right sides of Eq, (3), taking account of (1) and the identities Z; (Fo) = y;(Fo),
which are valid for Fo = 0 + 0, yields:

—}:‘ Ty, (Fo) + ® (1, Fo) E 2T, = a—@%}(—ﬁ’)— — 6(Fo)2 T.Z0. (4)
f= =1 i=]

Now we multiply each equation of (3) by T, and differentiate term by term:

T? §; (Fo) + Ty (Fo) = 2T3® (1, Fo) + TP 208 (Fo), i =1, 2, ... (5)
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Summing with respect to i in (5), we obtain the sum 2 T;¥;(Fo) and substitute the resulting expression
into (4): i=l

T%@@—mlmjawwﬁuFmVMT_GW%W>ame‘f%Nmignf (6)

i=1 =1 =l i=l1 . fa=]

Proceeding with repeated transformations of this kind we finally obtain an ordinary differential equa-

tion for @(1, Fo):
v @(1 Fo) = 66(1 Fo) +2b ~—~5 (Fo) (7)

A.J
m=0
with the coefficients
g, =(— 1yt $2T}, n=1,2, ... 8
2
= (— 1)”’#12 Z? :'"+l$ m= Oy l, L (9)

Taking account of the boundary condition of the third kind for the case of a medium at zero tempera-
ture,

— 900, FI) _ piirgyeqt, Fo), (10)
39X :
we finally arrive at the equation
Bi (Fo) © (1, Fo) + \". 4 @1, Fo) = T, 8 (Fo) 11
' ' 2 2 ™ dFom ' (D
n=l1 m=0

It follows from the method used for obtaining Eq, (11) that here the initial conditions for Fo = 0-0
will be zero,

Agsume, as in [1], that
Bi (Fo) = Bi, — f, (Fo), (12)
where Bij = const and fy(Fo) is representable by a rational combination of sines (or cosines), polynomials,
and exponents,

Proceeding in a manner analogous to [1], for a solution of Eq, (11), in the image domain, we make
use of the "bifrequency transfer function" method of [2]. According to [2],

1 dvi—t
el _L®1F ——— _[(g—qiW , 13
@ 9) Fo-»s ( 2 E(Yj_ 3] dgvy! llg qJ) W, ol (19
q=‘7]' .
where the sum is taken over all the qj-poles of the second argument of the function W(s, q), and vj is the
multiplicity of these poles,

If (12) is satisfied, we can obtain the bifrequency transfer function W(s, p) in the form of the absolutely
and uniformly convergent series

WG p) =3 W6, 0. (19

y=0

In the problem under consideration the zeroth term of this series yields the formula

SI-EPM (15)
p¥ () doms

Wo(s, p)

where



¥ (s) = Bi, -+ i a,s%, (16)
) k=1 "

and the gy and by are the coefficients (8) and (9) of Eq, (11),

It should be noted that the sum in (16) is a series expansion of the function Vsthvs, and in (15)
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Therefore

R 18
Wy(s, p) = — E , (18)

i=0 Ti
¥ (s) = Bi, - VsthVs. (19)

All the subsequent (# =1, 2, , ., ,) terms of the series (14) are found by the recursion formula:

1 dv~1
W, (s, p) =E : —— [(—4,)" W, (5, W, 4 (5—q, p—q)l. (20)
(v;— 1)t dgv
=

The sum in (20) is taken over all the q,-poles of multiplicity ¥, of the second argument of the bifre-
quency transfer function W, (s, q), which in o]ur problem has the forimn

W65, =29 £ = L fy(Fo). (21)
1? (S) Fo-»q
After determining the temperature @(1, Fo), the temperature field of the plate ® X, Fo) can be found
from the solution of the problem with a boundary condition of the first kind.

NOTATION

@ is the temperature;

L is the thickness of plate;

X is the space coordinate;

a is the thermal diffusivity;

A is the thermal conductivity;

o is the heat-transfer coefficient;
t is the time;

X =x/L is the dimensionless coordinate;
Fo = at/L? is the Fourier number;

Bi(Fo) =@ (Fo)L/A  is the Biot number,
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